

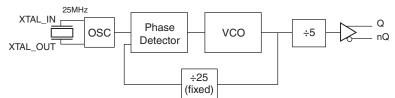
FEMTOCLOCK™ CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR

ICS843SDN

General Description

The ICS843SDN is a Gigabit Ethernet Clock Generator and a member of the HiPerClocks[™] family of high performance devices from IDT. The ICS843SDN uses a 24MHz crystal to synthesize 120MHz. The ICS843SDN uses IDT's 3rd generation

low phase noise VCO technology, and can achieve <1ps rms phase jitter performance over the 12kHz – 20MHz integration range. The ICS843SDN is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.


Features

- One differential 3.3V LVPECL output
- Crystal oscillator interface designed for 23.2MHz 30MHz, 18pF parallel resonant crystal
- Output frequency range: 116MHz 150MHz
- VCO range: 580MHz 750MHz
- Output duty cycle range: 47% 53%
- RMS phase jitter @ 120MHz, using a 24MHz crystal (12kHz – 20MHz): 0.81ps (typical)
- Full 3.3V supply mode
- 0°C to 70°C ambient operating temperature
- · Industrial temperature information available upon request
- Available in lead-free (RoHS 6) package

Table 1. Frequency Table - Typical Applications

Crystal Frequency (MHz)	Output Frequency (MHz)
25	125
24	120

Block Diagram

Pin Assignment

	2	8 Voi 7 Q 6 nQ	
XTAL_IN	4	5 🗌 nc	

ICS843SDN 8 Lead TSSOP 4.40mm x 3.0mm x 0.925mm package body G Package Top View

Table 2. Pin Descriptions

Number	Name	Туре	Description
1	V _{CCA}	Power	Analog supply pin.
2	V _{EE}	Power	Negative supply pin.
3, 4	XTAL_OUT XTAL_IN	Input	Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
5	nc	Unused	No connect.
6, 7	nQ, Q	Output	Differential output pair. LVPECL interface levels.
8	V _{CC}	Power	Core supply pin.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{CC}	4.6V	
Inputs, V _I	-0.5V to V _{CC} + 0.5V	
Outputs, I _O Continuos Current Surge Current	50mA 100mA	
Package Thermal Impedance, θ_{JA}	129.5°C/W (0 mps)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, V_{CC} = 3.3V \pm 5%, V_{EE} = 0V, T_A = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Core Supply Voltage		3.135	3.3	3.465	V
V _{CCA}	Analog Supply Voltage		V _{CC} – 0.10	3.3	V _{CC}	V
I _{EE}	Power Supply Current				83	mA

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Current; NOTE 1		V _{CC} – 1.4		V _{CC} – 0.9	μΑ
V _{OL}	Output Low Current; NOTE 1		V _{CC} – 2.0		V _{CC} – 1.7	μA
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

Table 3B. LVPECL DC Characteristics, V_{CC} = 3.3V \pm 5%, V_{EE} = 0V, T_A = 0°C to 70°C

NOTE 1: Outputs termination with 50 Ω to V_CC – 2V.

Table 4. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency; NOTE 1		23.2		30	MHz
Equivalent Series Resistance (ESR)				40	Ω
Shunt Capacitance				7	pF

NOTE 1:Input frequency is limited to a range of 23.2MHz – 30MHz due to VCO range.

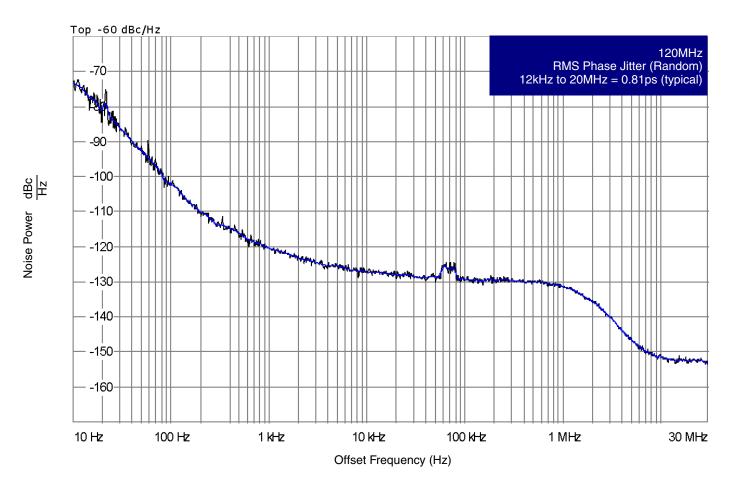
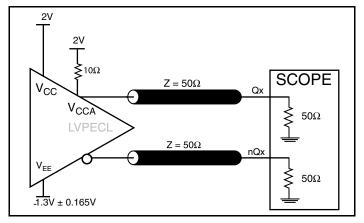
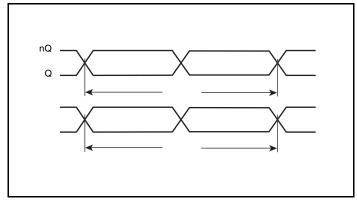
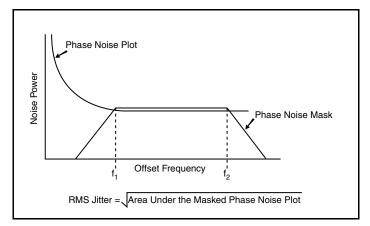

AC Electrical Characteristics

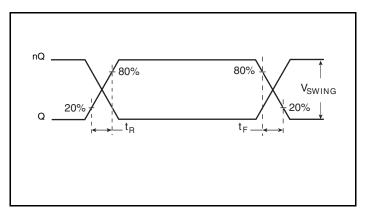
Table 5. AC Characteristics, V_{CC} = 3.3V \pm 5%, V_{EE} = 0V, T_{A} = 0°C to 70°C

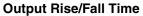

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency		116		150	MHz
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 1	120MHz, (Integration Range: 12kHz – 20MHz)		0.81		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	100		600	ps
odc	Output Duty Cycle		47		53	%

NOTE 1: Please refer to Phase Noise Plot.


Typical Phase Noise at 120MHz




3.3V LVPECL Output Load AC Test Circuit



Output Duty Cycle/Pulse Width/Period

RMS Phase Jitter

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS843SDN provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{CC} and V_{CCA} should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{CC} pin and also shows that V_{CCA} requires that an additional 10Ω resistor along with a 10µF bypass capacitor be connected to the V_{CCA} pin.

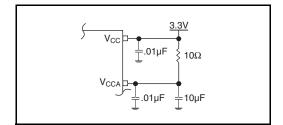


Figure 1. Power Supply Filtering

Crystal Input Interface

The ICS843SDN has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

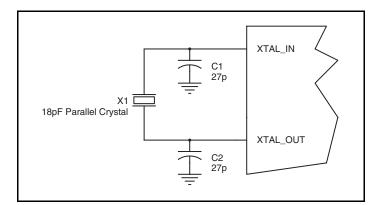


Figure 2. Crystal Input Interface

LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS signals, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output

impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50 Ω applications, R1 and R2 can be 100 Ω . This can also be accomplished by removing R1 and making R2 50 Ω .

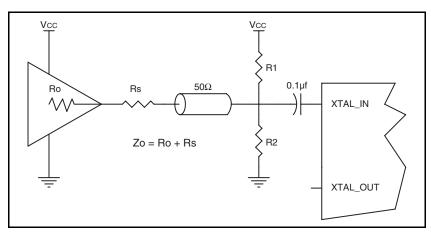


Figure 3. General Diagram for LVCMOS Driver to XTAL Input Interface

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

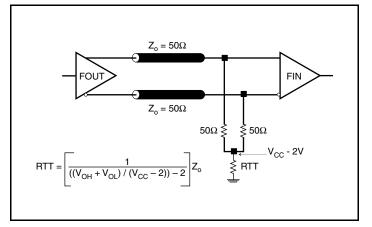


Figure 4A. 3.3V LVPECL Output Termination

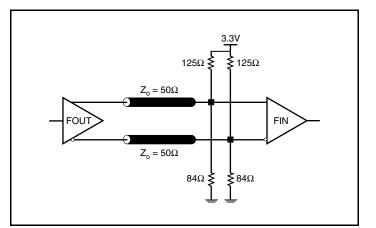


Figure 4B. 3.3V LVPECL Output Termination

Schematic Example

Figure 5A shows an example of the ICS843SDN application schematic. In this example, the device is operated at $V_{CC} = 3.3V$. The 18pF parallel resonant crystal is used. The C1 = 27pF and C2 = 27pF are recommended for frequency accuracy. For a different board layout, the C1 and C2 values may be slightly adjusted for optimizing frequency accuracy. Two examples of LVPECL terminations are shown in this schematic. Additional approaches are shown in the LVPECL Termination Application Note.

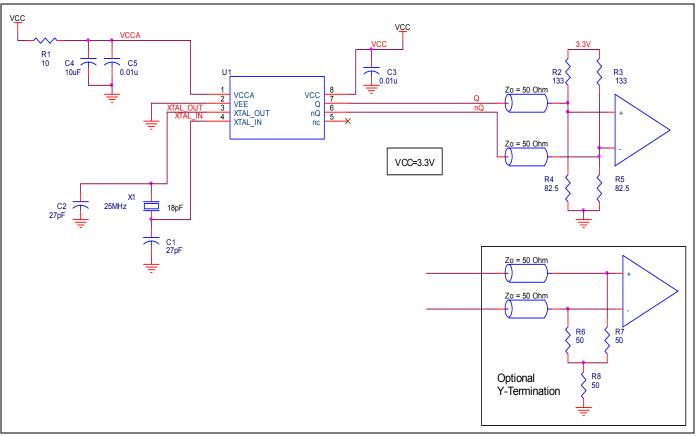


Figure 5A. ICS843SDN Schematic Example

Schematic Example

Figure 5B shows an example of ICS843SDN P.C. board layout. The crystal X1 footprint shown in this example allows installation of either surface mount HC49S or through-hole HC49 package. The footprints of other components in this example are listed in the

Table 6 There should be at least one decoupling capacitor per power pin. The decoupling capacitors should be located as close as possible to the power pins. The layout assumes that the board has clean analog power ground plane.

Table 6. Footprint Table

Reference	Size
C1, C2	0402
С3	0805
C4, C5	0603
R2	0603

NOTE: Table 6 lists component sizes shown in this layout example.

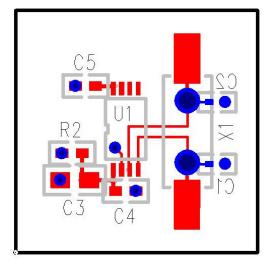


Figure 5B. ICS843SDN PC Board Layout Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS843SDN. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS843SDN is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC_MAX} * I_{EE_MAX} = 3.465V * 83mA = 287.60mW
- Power (outputs)_{MAX} = **30mW/Loaded Output pair**

Total Power_MAX (3.3V, with all outputs switching) = 287.60mW + 30mW = 317.60mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}C + 0.318W * 129.5^{\circ}C/W = 111.2^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ _{JA} by Velocity					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W		

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in *Figure 6.*

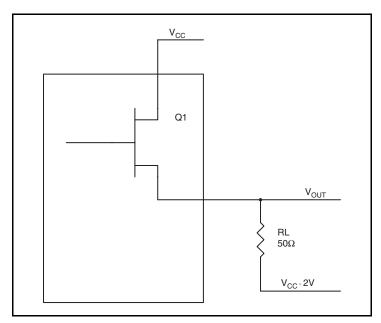


Figure 6. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50 Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.9V$ ($V_{CC_MAX} - V_{OH_MAX}$) = 0.9V
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.7V$ ($V_{CC_MAX} - V_{OL_MAX}$) = 1.7V

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

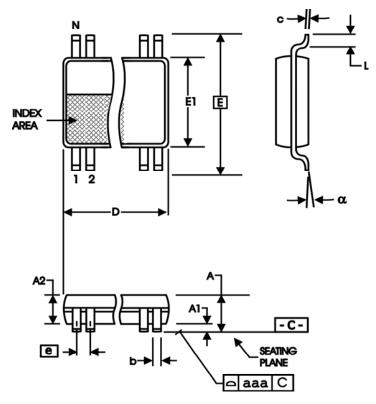
 $\begin{array}{l} \mathsf{Pd}_{-}\mathsf{H} = [(\mathsf{V}_{\mathsf{OH}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) = [(2\mathsf{V} - 0.9\mathsf{V})/50\Omega] * 0.9\mathsf{V} = 19.8\mathsf{mW} \end{array}$

 $\mathsf{Pd}_{L} = [(\mathsf{V}_{\mathsf{OL}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{L}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}))/\mathsf{R}_{L}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - 1.7\mathsf{V})/50\Omega] * 1.7\mathsf{V} = 10.2\mathsf{mW}$

Total Power Dissipation per output pair = $Pd_H + Pd_L = 30mW$

Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 8 Lead TSSOP


	θ_{JA} vs. Air Flow		
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W

Transistor Count

The transistor count for ICS843SDN is: 2395

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

Table 9. Package Dimensions

All Din	All Dimensions in Millimeters					
Symbol	Minimum	Maximum				
N		8				
Α		1.20				
A1	0.05	0.15				
A2	0.80	1.05				
b	0.19	0.30				
С	0.09	0.20				
D	2.90	3.10				
E	6.40	Basic				
E1	4.30	4.50				
е	0.65	Basic				
L	0.45	0.75				
α	0°	8 °				
aaa		0.10				

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
843SDNAGLF	SDNAL	"Lead-Free" 8 Lead TSSOP	Tube	0°C to 70°C
843SDNAGLFT	SDNAL	"Lead-Free" 8 Lead TSSOP	2500 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an LF suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Contact Information:

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT

Technical Support

netcom@idt.com +480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800-345-7015 (inside USA) +408-284-8200 (outside USA)

© 2009 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA